Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Lınear Algebra MAT 116 2 2 + 0 2 4
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili İngilizce
Dersin Seviyesi Lisans
Dersin Türü Zorunlu
Dersin Koordinatörü Dr.Öğr.Üyesi EMİNE ÇELİK
Dersi Verenler
Dersin Yardımcıları
Dersin Kategorisi Diğer
Dersin Amacı

Öğrencilerin; lineer denklem sistemlerinin çözümü, matrislerlerle gösterimi, rank, matris ve determinantlarla lineer sistemlerin çözümleri, vektörler, skaler çarpım-vektörel çarpımı, öz değerler ve öz vektörler ve lineer dönüşüm yöntemlerini öğrenmesi ve lineer sistemlerin davranışlarına uyarlayabilmesi.

Dersin İçeriği

Matris ve determinant işlemleri, lineer denklem sistemlerinin matris-determinant yaklaşımlarıyla çözümü (Gauss, Gauss-Jordan, Cramer, ters matris), vektörler, vektörel işlemler, vektörlerin skaler ve vektörel çarpımları, ortagonal-ortanormal vektörler, lineer dönüşümler, kare matrisin öz değer ve öz vektörleri, öz değer - öz vektörlerin lineer sistem davranışına etkisi.

# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 Temel matris – determinant işlemleri, vektör uzayları ve vektörel işlemler, öz değer – öz vektörler ve lineer sistemlerin davranışlarındaki etkileri. Deney ve Laboratuvar, Gezi / Gözlem, Soru-Cevap, Tartışma,
Hafta Ders Konuları Ön Hazırlık
1 Introduction to systems of linear equations.
2 Vector Equations. The Matrix equation Ax=b. Row reduction and echelon forms.
3 Gaussian Elimination and Gauss-Jordan Elimination.
4 Operations with Matrices. Properties of Matrix operations.
5 Theory of linear systems, homogeneous and nonhomogeneous systems, rank.
6 The inverse of a matrix. Characterization of invertible matrices.
7 The Determinant of a Matrix. Determinants and Elementary operations. Properties of determinants.
8 Applications of Determinants, Cramer's rule.
9 Vectors, linear independence, bases and transformations.
10 The Scalar Product, inner product spaces, orthonormal bases: Gram-Schmidt Process.
11 Eigenvalues and eigenvectors.
12 The Characteristic function. Cayley-Hamilton Theorem.
13 Diagonalization. Similar Matrices.
14 Eigenvalues and eigenvectors on behaviors of linear systems.
Kaynaklar
Ders Notu
Ders Kaynakları

[1] David C.Lay, Linear Algebra and Its Applications, Pearson, 2003.

[2] Ron Larson,  Elementary Linear Algebra, Cengage Learning, 2017.

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 a Matematik, fen bilimleri ve ilgili mühendislik disiplinine özgü konularda yeterli bilgi birikimi;
1 b Bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi.
2 a Karmaşık mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi;
2 b Bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi.
3 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi.
4 Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi.
5 a Karmaşık mühendislik problemlerinin veya disipline özgü araştırma konularının incelenmesi için deney tasarlama becerisi.
5 b Deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi.
6 a Disiplin içi takımlarda etkin biçimde çalışabilme becerisi.
6 b Çok disiplinli takımlarda etkin biçimde çalışabilme becerisi.
6 c Bireysel çalışma becerisi.
7 a Sözlü ve yazılı etkin iletişim kurma, etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme becerisi,
7 b En az bir yabancı dil bilgisi.
7 c Etkin sunum yapabilme becerisi.
7 d Açık ve anlaşılır talimat verme ve alma becerisi.
8 Yaşam boyu öğrenmenin gerekliliği konusunda farkındalık; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
9 a Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk hakkında bilgi,
9 b Mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.
10 a Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi;
10 b Girişimcilik, yenilikçilik hakkında farkındalık
10 c Sürdürülebilir kalkınma hakkında bilgi.
11 a Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi;
11 b Mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 a PÇ 1 b PÇ 2 a PÇ 2 b PÇ 3 PÇ 4 PÇ 5 a PÇ 5 b PÇ 6 a PÇ 6 b PÇ 6 c PÇ 7 a PÇ 7 b PÇ 7 c PÇ 7 d PÇ 8 PÇ 9 a PÇ 9 b PÇ 10 a PÇ 10 b PÇ 10 c PÇ 11 a PÇ 11 b
1 Temel matris – determinant işlemleri, vektör uzayları ve vektörel işlemler, öz değer – öz vektörler ve lineer sistemlerin davranışlarındaki etkileri.
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Kısa Sınav 0
Toplam 0
Toplam 0
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 2 32
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 2 32
Ara Sınav 1 8 8
Kısa Sınav 3 8 24
Final 1 10 10
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 2 32
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 2 32
Ara Sınav 1 8 8
Kısa Sınav 2 8 16
Ödev 1 8 8
Final 1 10 10
Toplam İş Yükü 212
Toplam İş Yükü / 25 (Saat) 8,48
dersAKTSKredisi 4