Yazdır

Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
ANALYTICAL GEOMETRY II MAT 104 2 3 + 0 3 5
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Lisans
Dersin Türü ZORUNLU
Dersin Koordinatörü Prof.Dr. MEHMET ALİ GÜNGÖR
Dersi Verenler
Dersin Yardımcıları Research Assistants of Mathematics Department
Dersin Kategorisi Alanına Uygun Öğretim
Dersin Amacı
To give the fundamental concept of Analytical geometry and to provide the using of this cource´s subjects first of all in geometry and the other cources.
Dersin İçeriği
General second order surfaces on the plane,parallel translating the axis, rotating the axis, elements of conics,second order surfaces, curves and surfaces in three dimensional space,helix, cycloid, epicycloid,hypocycloid ,cardioid, ellipsoid, hyperboloid, ruled surfaces.General second order surfaces on the plane, parallel translating the axis, rotating the axis, elements of conics, second order surfaces, curves and surfaces in three dimensional space, helix, cycloid, epicycloid, hypocycloid, cardioid, ellipsoid, hyperboloid, ruled surfaces.
Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 - He/She distinguishes the plane and space analytic geometry, 1 - 2 - 3 - A - C -
2 - He/She uses detailed knowledge related to conics, 1 - 2 - 3 - 4 - 15 - A - C -
3 - He/She classifies and generalizes the conics, 1 - 2 - 3 - A - C -
4 - He/She restates curves of line, circle and ellipse etc. with coordinates of point, 1 - 2 - 3 - 4 - 15 - A - C -
5 - He/She calculates tangents of parabola, ellipse and hyperbola and circle, 2 - 3 - 4 - 15 - A - C -
6 - He/She calculates vertex and diagonal on conics which have the same foci, 2 - 3 - 4 - 15 - A - C -
7 - He/She interprets the curves in space, circular helix and helix on the cone. 1 - 2 - 3 - A - C -
8 - He/She classifies revolving curves, ellipsoid, hyperboloid and ruled surfaces, 1 - 2 - 3 - A - C -
9 - He/She debates the quadratic forms and quadratic surfaces, 2 - 3 - 4 - 15 - A - C -
Öğretim Yöntemleri: 1:Lecture 2:Question-Answer 3:Discussion 4:Drilland Practice 15:Problem Solving
Ölçme Yöntemleri: A:Testing C:Homework

Ders Akışı

Hafta Konular ÖnHazırlık
1 Line coordinates, the equations with the linear coordinates. [1] 161-170
2 Point-Line duality, linear dependence, duality in space. [1] 170-183
3 Parabola, ellipse, hyperbola, circle, tangent at conics. [1] 184-191
4 Tangent at ellipse and hyperbola, linear equations of ellipse and hyperbola. [1] 191-202
5 Conics with the same foci, confocal parabolas, cycloid, vertex and diagonal at conics. [1] 203-216
6 General quadratic equations, pencil of conics, center, diagonal, asymtot. [1] 216-222
7 Elements of conics, focus and directrix at conics. [1] 222-230
8 Curves in space,circular helix, helix on the cone. [1] 231-265
9 Cycloid, cardioid. [1] 267-288
10 Folium of Descartes, Cassini oval, Lemniscate, sphere and cylinder surface [1] 289-303
11 Cone, Rregression surface, torus [1] 305-315
12 Quadratic forms and Quadratic surfaces [1] 316-327
13 Second order surfaces , epicycloid, hyperboloid. [1] 331-350
14 Hyperboloid of two sheets, hyperbolic paraboloid, ruled quadratics. [1] 355-358

Kaynaklar

Ders Notu [1] Prof. Dr. H. Hilmi Hacısalihoğlu, "2 ve 3 Boyutlu uzaylarda Analitik Geometri", Altıncı baskı, Ankara, 2003.
Ders Kaynakları [2] Prof. Dr. Rüstem Kaya, "Analitik Geometri", Beşinci baskı, Eskişehir, 2003.
[3] Prof.Dr.Arif Sabuncuoğlu "Analitik Geometri" Nobey Yayını,Beşinci Baskı, İstanbul, 2009.

Döküman Paylaşımı


Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5
1 He/ she has the ability to use the related materials about mathematics, constructed on competency, achieved in secondary education and also has the further knowledge equipment. X
2 Evaluating the fundamental notions, theories and data with academic methods, he/ she determines and analyses the encountered problems and subjects, exchanges ideas, improves suggestions propped up proofs and inquiries. X
3 He/ she has the competency of executing the further studies of undergraduate subjects independently or with shareholders. X
4 He/ she follows up the knowledge of mathematics and has the competency of getting across with his (or her) professional colleagues within a foreign language. X
5 He/ she has the knowledge of computer software information as a mathematician needs. X
6 He/ she has scientific and ethic assets in the phases of congregating, annotating and announcing the knowledge about mathematics. X
7 He/ she has the ability to make the mathematical models of contemporary problems and solving them. X
8 He/ she uses the ability of abstract thinking. X

Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 70
KisaSinav 1 10
KisaSinav 2 10
Odev 1 10
Toplam 100
Yıliçinin Başarıya Oranı 50
Finalin Başarıya Oranı 50
Toplam 100

AKTS - İş Yükü

Etkinlik Sayısı Süresi(Saat) Toplam İş yükü(Saat)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 2 32
Mid-terms 1 10 10
Quiz 2 5 10
Assignment 1 6 6
Final examination 1 20 20
Toplam İş Yükü 126
Toplam İş Yükü /25(s) 5.04
Dersin AKTS Kredisi 5.04
; ;