Ders Bilgileri

#### Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
HEURISTIC APPROACHES TO BASIC MATH TOPICS MAT 257 3 2 + 1 3 5
 Dersin Dili Türkçe Dersin Seviyesi Lisans Dersin Türü SECMELI Dersin Koordinatörü Doç.Dr. İSMET ALTINTAŞ Dersi Verenler Dersin Yardımcıları Dersin Kategorisi Dersin Amacı The aim is to comprehend the mind animating basic mathematical topics. Dersin İçeriği Sets and operations with sets, number of sets, Cartesian product, relations, functions and types, limits, continuity, derivative, integral, mathematical structures, protected properties, invariants, diagrammatic representation of the system, diagrammatic products, curve, permutations, diagrammatic multiplication of matrices, triangles, surfaces n-genes, characteristics, brides, knots, tangles
 Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
 Öğretim Yöntemleri: Ölçme Yöntemleri:

#### Ders Akışı

Hafta Konular ÖnHazırlık
1 Sets Are community members ?, Is the place where the elements are collected? Why do we need to set? The paradox about sets.
2 Intuitively sets, open sets, closed set how must be understood? Operations on sets.
3 Natural numbers, integers, rational numbers, irrational numbers an overview of all the properties of real numbers
4 Finite, limitation on countability and infinity
5 Cartesian product, an intuitive approach on the functions and types. Is Mathematics limited to classificate subset of Cartesian product ?
6 How should we understand Limits and Continuity? What does it do?
7 Why are we derivating? What is derivation as derivatives?, What is Support as derivatives? Why do we find the tangent of a curve?
8 Thoughts on Integration and integrals
9 Why establish structure on a set? How establish? What does it do, and what are the unchanging characteristics protected by these structures?
10 Mathematical Beauty I: diagrammatic representation of a mathematical system
11 Mathematical Beauty II: curves, permutations of abstract matrices (diagrammatic) multiplications
13 Mathematical beauty IV: Surfaces, n-genes, characteristics
14 Mathematical beauty V: Braids, knots and tangles

#### Kaynaklar

Ders Notu 1.Temel matematik, Analiz, Geometri ve soyut matematik kitapları.
Ders Kaynakları 2.Kauffman, L., Knots and physics, World Scientific , London,1993.

#### Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5
1 He/ she has the ability to use the related materials about mathematics, constructed on competency, achieved in secondary education and also has the further knowledge equipment. X
2 Evaluating the fundamental notions, theories and data with academic methods, he/ she determines and analyses the encountered problems and subjects, exchanges ideas, improves suggestions propped up proofs and inquiries. X
3 He/ she has the competency of executing the further studies of undergraduate subjects independently or with shareholders. X
4 He/ she follows up the knowledge of mathematics and has the competency of getting across with his (or her) professional colleagues within a foreign language.
5 He/ she has the knowledge of computer software information as a mathematician needs.
6 He/ she has scientific and ethic assets in the phases of congregating, annotating and announcing the knowledge about mathematics. X
7 He/ she has the ability to make the mathematical models of contemporary problems and solving them. X
8 He/ she uses the ability of abstract thinking. X

#### Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 40
KisaSinav 1 20
KisaSinav 2 20
PerformansGoreviUygulama 1 20
Toplam 100
Yıliçinin Başarıya Oranı 50
Finalin Başarıya Oranı 50
Toplam 100

#### AKTS - İş Yükü

Etkinlik Sayısı Süresi(Saat) Toplam İş yükü(Saat)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 2 32
Mid-terms 1 10 10
Quiz 2 10 20
Assignment 1 5 5
Performance Task (Application) 1 5 5
Final examination 1 15 15
Toplam İş Yükü 135
Toplam İş Yükü /25(s) 5.4
Dersin AKTS Kredisi 5.4
; ;