Yazdır

Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
LIE GROUPS AND LIE ALGEBRAS II MAT 591 0 3 + 0 3 6
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Yüksek Lisans
Dersin Türü SECMELI
Dersin Koordinatörü Doç.Dr. MAHMUT AKYİĞİT
Dersi Verenler
Dersin Yardımcıları
Dersin Kategorisi
Dersin Amacı
The lie groups and lie algebras II course aims to give the fundamental knowledge for the studies of graduate students who study at topology, algebra and geometry branch.
Dersin İçeriği
sl(2) and its Representations, The Lie algebra of an algebraic group, Reel and Complex Lie groups and Algebras, Split Complex and Dual Lie Groups, Topology of Lie Groups, Compact Lie groups, Compactness , Connectedness, The maximal torus of a compact Lie group, Nillpotent Lie Groups, Matrix groups and transformation groups, Dynkin Diagrams Cartan Matrices, Classification of Dynkin diagrams, Casimir elements and Weyl teorems, Simple roots, Properties of root systems, Actions of Lie groups and Lie algebras
Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 - He/She realizes the lie algebra of an algebraic group 1 - 2 - 3 - 10 - 14 - 15 - A - C -
2 - He/She learns split complex and dual lie groups 1 - 2 - 3 - 10 - 14 - 15 - A - C -
3 - He/She realizes nillpotent lie groups 1 - 2 - 3 - 10 - 14 - 15 - A - C -
4 - He/She realizes Dynkin diagrams cartan matrices 1 - 2 - 3 - 10 - 14 - 15 - A - C -
5 - He/She learns actions of lie groups and lie algebras 1 - 2 - 3 - 10 - 14 - 15 - A - C -
Öğretim Yöntemleri: 1:Lecture 2:Question-Answer 3:Discussion 10:Brain Storming 14:Self Study 15:Problem Solving
Ölçme Yöntemleri: A:Testing C:Homework

Ders Akışı

Hafta Konular ÖnHazırlık
1 sl(2) and its Representations
2 The Lie algebra of an algebraic group
3 Reel and Complex Lie groups and Algebras
4 Split Complex and Dual Lie Groups
5 Topology of Lie Groups
6 Compact Lie groups, Compactness , Connectedness
7 The maximal torus of a compact Lie group
8 Nillpotent Lie Groups
9 Matrix groups and transformation groups
10 Dynkin Diagrams Cartan Matrices
11 Classification of Dynkin diagrams
12 Casimir elements and Weyl teorems
13 Simple roots, Properties of root systems
14 Actions of Lie groups and Lie algebras

Kaynaklar

Ders Notu 1.) Lie Groups, Lie Algebras and Representation Theory: An Introduction, Brian C. Hall, (2005) Graduate Texts in Mathematics, Springer Verlag
2.) Lie Groups: An Introduction through Linear Groups, W. Rossman, (2005) Oxford Graduate Texts in Mathematics, Oxford Science Publications
Ders Kaynakları

Döküman Paylaşımı


Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5
1 Student follows the current journals in his/her field and puts forward problems. X
2 Student understands the relations between the disciplines pertaining to the undergraduate programs of Mathematics X
3 Student gets new knowledge by relating the already acquired experience and knowledge with the subject-matters out of his/her field. X
4 Student uses different proof methods to come to a solution by analyzing the problems encountered. X
5 Student determines the problems to be solved within his/her field and if necessary takes the lead. X
6 Student conveys, in team work, his/her knowledge in the studies done in different disciplines by applying the dynamics pertaining to his/her own field. X
7 Student critically evaluates the knowledge got at the bachelor´s degree level, makes up the missing knowledge and focuses on the current subject-matters X
8 Student knows a foreign language to communicate orally and in writing and uses the foreign language in a way that he/she can have a command of the Maths terminology and can do a source research. X
9 Student improves himself/herself at a level of expertness in Mathematics or in the fields of application by improving the knowledge got at the bachelor´s degree level. X
10 Student considers the scientific and cultural ethical values in the phases of gathering and conveying data or writing articles. X

Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 70
KisaSinav 1 10
Odev 1 10
Odev 2 10
Toplam 100
Yıliçinin Başarıya Oranı 50
Finalin Başarıya Oranı 50
Toplam 100

AKTS - İş Yükü

Etkinlik Sayısı Süresi(Saat) Toplam İş yükü(Saat)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 3 48
Mid-terms 1 10 10
Quiz 1 10 10
Assignment 2 16 32
Final examination 1 10 10
Toplam İş Yükü 158
Toplam İş Yükü /25(s) 6.32
Dersin AKTS Kredisi 6.32
; ;