Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Lınear Algebra MAT 116 2 2 + 0 2 4
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili İngilizce
Dersin Seviyesi Lisans
Dersin Türü Zorunlu
Dersin Koordinatörü Dr.Öğr.Üyesi OSAMA A.A. NAJI
Dersi Verenler
Dersin Yardımcıları
Dersin Kategorisi Diğer
Dersin Amacı

Öğrencilerin; lineer denklem sistemlerinin çözümü, matrislerlerle gösterimi, rank, matris ve determinantlarla lineer sistemlerin çözümleri, vektörler, skaler çarpım-vektörel çarpımı, öz değerler ve öz vektörler ve lineer dönüşüm yöntemlerini öğrenmesi ve lineer sistemlerin davranışlarına uyarlayabilmesi.

Dersin İçeriği

Matris ve determinant işlemleri, lineer denklem sistemlerinin matris-determinant yaklaşımlarıyla çözümü (Gauss, Gauss-Jordan, Cramer, ters matris), vektörler, vektörel işlemler, vektörlerin skaler ve vektörel çarpımları, ortagonal-ortanormal vektörler, lineer dönüşümler, kare matrisin öz değer ve öz vektörleri, öz değer - öz vektörlerin lineer sistem davranışına etkisi.

# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 Temel matris – determinant işlemleri, vektör uzayları ve vektörel işlemler, öz değer – öz vektörler ve lineer sistemlerin davranışlarındaki etkileri. Deney ve Laboratuvar, Gezi / Gözlem, Soru-Cevap, Tartışma,
Hafta Ders Konuları Ön Hazırlık
1 Introduction to systems of linear equations.
2 Vector Equations. The Matrix equation Ax=b. Row reduction and echelon forms.
3 Gaussian Elimination and Gauss-Jordan Elimination.
4 Operations with Matrices. Properties of Matrix operations.
5 Theory of linear systems, homogeneous and nonhomogeneous systems, rank.
6 The inverse of a matrix. Characterization of invertible matrices.
7 The Determinant of a Matrix. Determinants and Elementary operations. Properties of determinants.
8 Applications of Determinants, Cramer's rule.
9 Vectors, linear independence, bases and transformations.
10 The Scalar Product, inner product spaces, orthonormal bases: Gram-Schmidt Process.
11 Eigenvalues and eigenvectors.
12 The Characteristic function. Cayley-Hamilton Theorem.
13 Diagonalization. Similar Matrices.
14 Eigenvalues and eigenvectors on behaviors of linear systems.
Kaynaklar
Ders Notu
Ders Kaynakları

[1] David C.Lay, Linear Algebra and Its Applications, Pearson, 2003.

[2] Ron Larson,  Elementary Linear Algebra, Cengage Learning, 2017.

# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı
1 Temel matris – determinant işlemleri, vektör uzayları ve vektörel işlemler, öz değer – öz vektörler ve lineer sistemlerin davranışlarındaki etkileri.
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
Toplam 0
Toplam 0
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 2 32
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 2 32
Ara Sınav 1 8 8
Kısa Sınav 3 8 24
Final 1 10 10
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 2 32
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 2 32
Ara Sınav 1 8 8
Kısa Sınav 2 8 16
Ödev 1 8 8
Final 1 10 10
Toplam İş Yükü 212
Toplam İş Yükü / 25 (Saat) 8,48
Dersin AKTS Kredisi 4