Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Veri Madenciliği ve İş Zekası YBS 354 6 2 + 0 2 5
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Lisans
Dersin Türü Seçmeli
Dersin Koordinatörü Doç.Dr. HALİL İBRAHİM CEBECİ
Dersi Verenler Doç.Dr. HALİL İBRAHİM CEBECİ,
Dersin Yardımcıları
Dersin Kategorisi Diğer
Dersin Amacı

Bu dersin amacı Veri madenciliği ve iş zekası kavramlarını ve bu kavramların işletmeler açısından öncemini öğrencilere kavratabilmek, bu konular hakkında teorik altyapı oluşturarak, yazılımlar yardımıyla gerçekleştirilecek uygulamalar konunun pekiştirilmesi sağlamaktır.

Dersin İçeriği

Derste öncelikle iş zekası alanında bir giriş gerçekleştirilecek ve girişten sonra Veri madenciliği ve iş zekasının teknolojik altyapısı (Veri kavramı ve Veri ambarları) hakkında bilgiler sunulacaktır. Sonrasında Veri madenciliği konusuna değinilecek, veri madenciliği yöntemleri hakkında bilgiler sunulacaktır. Bu metotlar EXCEL ve/veya SPSS Modeller programları ile uygulamalı olarak değerlendirilecektir. Dersin son kısmında ise Normatif iş zekası yaklaşımları ve Görsel analitik konularına değinilecektir. Bu konulardaki uygulamalar ise Tableau yazılımı ile gerçekleştirilecektir. Ders İş zekası ve veri madenciliği trendleri ve Büyük Veri analitiği konuları hakkında genel bilgiler verilerek tamamlanacaktır.

Kalkınma Amaçları
# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 İş zekası ile ilgili temel kavramlarının ve iş zekası geliştirme ve uygulama sürecinin öğrenilmesi Anlatım, Soru-Cevap, Beyin Fırtınası,
2 Veri ambarları, OLAP ve veri madenciliği temel kavramları, teknikleri ile ilgili temel yeterliliklerin edinilmesi Anlatım, Soru-Cevap, Beyin Fırtınası,
3 İşletme performans yönetimi ve iş zekası ilişkisinin kurulması Anlatım, Soru-Cevap, Beyin Fırtınası,
4 Web ve metin madenciliği araçlarının kavranması Anlatım, Soru-Cevap, Beyin Fırtınası,
Hafta Ders Konuları Ön Hazırlık
1 İş Zekâsına Giriş Ders notlarının ilgili kısımlarının gözden geçirilmesi
2 Karar verme sürecinin temelleri Ders notlarının ilgili kısımlarının gözden geçirilmesi
3 Veri Ambarları Ders notlarının ilgili kısımlarının gözden geçirilmesi
4 Görselleştirme ve Raporlama, OLAP Ders notlarının ilgili kısımlarının gözden geçirilmesi
5 Veri Madenciliğine Giriş ve Tanımlayıcı Teknikler Ders notlarının ilgili kısımlarının gözden geçirilmesi
6 Veri Madenciliği Teknikleri (Birliktelik Kuralları, Sınıflandırma, Kümeleme, Aykırılık Keşfi) Ders notlarının ilgili kısımlarının gözden geçirilmesi
7 Veri Madenciliği Uygulamaları (Yazılım Destekli) Ders notlarının ilgili kısımlarının gözden geçirilmesi
8 Veri Madenciliği Uygulamaları (Yazılım Destekli) Ders notlarının ilgili kısımlarının gözden geçirilmesi
9 ARA SINAV
10 Görsel Analitik Kavramı ve İşletme Performans Yönetimi Ders notlarının ilgili kısımlarının gözden geçirilmesi
11 İş Zekası Uygulamaları (Tableau Yazılımı Destekli) Ders notlarının ilgili kısımlarının gözden geçirilmesi
12 İş Zekası Uygulamaları (Tableau Yazılımı Destekli) Ders notlarının ilgili kısımlarının gözden geçirilmesi
13 İş Zekası Tekniklerine Giriş (Metin ve Web Madenciliği, Normatif ve Zeki Teknikler) Ders notlarının ilgili kısımlarının gözden geçirilmesi
14 İş Zekası ve Veri Madenciliği Trendleri ve Büyük veri analitiği Ders notlarının ilgili kısımlarının gözden geçirilmesi
Kaynaklar
Ders Notu

Ders Notları haftalık olarak sisteme yüklenecek olan sunulardır.

Ders Kaynakları

1-) Business Intelligence and Analytics: Systems for Decision Support 10e
2-) Handbook Of Statıstıcal Analysıs And Data Mınıng Applıcatıons, Robert Nisbet, John Elder, Gary Miner, Elsevier, 2009
3-) Data Mining – Concepts and Techniques - Jiawei Han, Micheline Kamber, Jian Pei, Elsevier, 2012
4-) Introduction to Data Mining - Pang-Ning Tan, Michael Steinbach, Vipin Kumar,  2005

 

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Disiplinindeki temel kavramları ve kuramları bilir. X
2 Disiplinindeki sorunları analiz edip bu sorunlara çözüm önerileri sunacak analitik düşünme becerileri ne sahiptir. X
3 Girişimci kişilik özelliklerini tanır ve girişimci kişilik özelliklerini geliştirme fırsatlarını izler. X
4 Girişimci ve iç girişimci davranışları tanır, bu davranışları iş fırsatlarını değerlendirmede ve görev yaptığı kurumlarda yeniliği teşvik etmede sergileyebilir. X
5 Bilgi teknolojisinin kavramsal bilgisine ve pratik uygulamalarına hâkimdir. X
6 Alanına yönelik bilgi teknolojilerini kullanabilir. X
7 Meslek yaşamında insanların ve ekonomilerin gelişimini ve çevrenin iyileştirilmesini sağlayan faaliyetleri tasarlayabilir. X
8 İş yaşamında etik sorunların ve bu sorunların toplumsal ve kurumsal etkilerinin farkında olur. X
9 Sorun çözme süreçlerinde etik sorumluluklarını bilir ve bu süreçlerde etik ilkelere riayet eder. X
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6 PÇ 7 PÇ 8 PÇ 9
1 İş zekası ile ilgili temel kavramlarının ve iş zekası geliştirme ve uygulama sürecinin öğrenilmesi
2 Veri ambarları, OLAP ve veri madenciliği temel kavramları, teknikleri ile ilgili temel yeterliliklerin edinilmesi
3 İşletme performans yönetimi ve iş zekası ilişkisinin kurulması
4 Web ve metin madenciliği araçlarının kavranması
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Ara Sınav 35
1. Ödev 25
2. Ödev 25
3. Ödev 15
Toplam 100
1. Yıl İçinin Başarıya 60
1. Final 40
Toplam 100
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Performans Görevi (Uygulama) 2 10 20
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 3 48
Final 1 15 15
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 2 32
Ara Sınav 1 10 10
Kısa Sınav 1 5 5
Toplam İş Yükü 130
Toplam İş Yükü / 25 (Saat) 5,2
Dersin AKTS Kredisi 5